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Debye Characteristic Temperature as a Measure of the Ordering Parameter. I. General Theory 
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The Debye characteristic temperature of a binary alloy has been expressed in terms of ordering param- 
eter, the Debye characteristic temperature of the constituent metals and the proportions of the metals. 
This has been done by considering the non-central force model with electron gas participation. The 
first- and second-nearest-neighbour interactions only have been considered. This expression is found to 
predict correctly the Debye characteristic temperatures of Cu3Au as a function of the long-range order- 
ing parameter. 

Introduction 

Since order-disorder phenomena depend upon the dis- 
tribution of atoms in the different lattice sites, all struc- 
ture-sensitive properties (electrical, thermal, mechani- 
cal etc.) are expected to change with a change in order. 
Therefore all these properties can be used as a measure 
of the ordering in the material. The frequency spec- 
trum of the solid will also depend upon the distribu- 
tion of atoms and, as the Debye characteristic tem- 
perature is connected with the frequency spectrum, the 
Debye characteristic temperature will also change as a 
result of order-disorder phenomena. Up till now no 
theoretical work has been reported connecting the 
Debye characteristic temperature with the ordering. 
In the course of the present investigation an expression 
connecting the Debye characteristic temperature with 
the state of order has been derived. 

Part II of this series of papers (Mitra & Chaudhuri, 
1974) reports, with the help of this expression, the 
determination of the ordering parameter of s-brass 
which cannot be determined by usual X-ray methods; 
the present theoretical investigation was taken up 
precisely for this purpose. Comparison of existing 
experimental data for Cu3Au with the derived expres- 
sion is reported in Part I to establish the validity of 
the theoretical expression derived. 

Theoretical 

The Debye characteristic temperature O of a crystal 
for both b.c.c, and f.c.c, lattices including the effect 
of the electron gas can be written as (de Launay, 1953) 

where 

O =  C [ c~2 +M ] 2c44 1/2 

h[qN] ~/3 
C= -k- -4-nI7 a3/Zf(cu'elz'c44) (1) 

and c12 and c44 are the elastic constants of the crystal, 
h is Planck's constant, K is Boltzmann's constant, V is 

atomic volume, a is the lattice constant, M is the atomic 
weight, and f ( c , ,  c12, c44) is the function of elastic con- 
stants cu, c~2, c44. 

By considering the central-force model, de Launay 
(1953) has deduced relations connecting the elastic 
constants and force constants of f.c.c, and b.c.c, crys- 
tals. He has neglected the angular forces. But in or- 
dinary metals, the angular force constants between the 
nearest-neighbour atoms are of the same order of 
magnitude as the central force constant. Also, the 
electron gas contributes considerably to elastic con- 
stants. Thus from considerations of a non-central force 
model and electron gas participation (which has been 
assumed to follow the ion motion exactly in acoustic 
waves) the relations between the force constants and 
the elastic constants of the metals having the f.c.c. 
structure are given by (see the Appendix) 

a(ell + 2c12) = 4~2 + 8 7 -  4]?+ 0 

a(cu - clz) = 6~1 + 4~2 -- 4:~ + 2]? 

a e 4 4  --~ 2~1 + 2]? (2) 

where el, ~2, Y and fl are the different central and an- 
gular force constants due to the nearest and next- 
nearest-neighbour interactions and ~ is the force con- 
stant arising from the electron gas. Alternatively, from 
(2) we get, 

a(c12 + 2c44 ) = 2e~ + 2fl + 4}, + 3 " (3) 

For binary alloys, as a result of the like and unlike 
neighbours, there are three different kinds of atomic 
force constants, for example, c~ "~, ct~ 8 and ctl ~B. Atomic 
force constants for the AB alloy are given by the 
average of atomic force constants for A-A, B-B and 
A-B pairs weighted by the probability of appearance 
of these pairs. For face-centred cubic alloys, as deduced 
by Shimizu & Niu (1967), the mean atomic force con- 
stants of the alloy AB (pq) composed of two metals 
A and B having the atomic proportions p and q respec- 
tively are given by 

A C 3 0 A  - 6*  
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A B ( p q )  __ , .sAAnO n n n  _1_ e~BBnO r, nn ~ , v A B f  r~O .~nn ~ .~0 nnn'~ 
1 - -  ~1  l " A I J A  " ~'1 I~BIJB ~ ~1  \ l J A I J a  T F B I J A  ) 

o~AB(pq) __ NAAr~O ,~nnn ~ ~ B B n O  nnnn ..1_ e,,aB[ nO ,~nnn 
2 - - ~ 2  I J A I J A  -'V~"2 I J B F B  " ~ 2  \ I J A F B  - I - 1 J B I J A  n} 

~ A a ( p q )  __ ~ A A n O  n n n  .j_ q~aano nnn  .A_ - z  eaea - ,  eaea -- zaateaea ~-eaea~ 
~ a B ( p q )  __ a a  0 nn ..1_. R B B n O  n n n  _I_ R A B [  nO ,~nn ,~0 nnn~ --fl PAPA " 1 "  e a P ' a  " 1 "  k l J a l J a  ±-l-lJalJa ] 

BB 0 nn _1_ A B  0 nn 0 A PaPa (PAPa +PaP.n) (4) 

where p], pO and p)", p[" and p"f", pnBnn denote the 
probabilities of appearance of A and B atoms at the 
origin, nearest-neighbour and next-nearest-neighbour 
lattice points respectively. 

From order-disorder theory, if s is the long-range 
or short-range order parameter, then it can be shown 
(Elcock. 1956) that 

POP"f =p2(1 - s ' )  

p°p"n" = 1 +p2 2p-p2s2 
0 nnn PAPA =p2(1 +S) 2 

POP"n"" =(1--p--ps)  2 
0 nn 0 nn PAPa +PAPA = 2p-- 2p z + 2pZs z 

0 . . . . . 0 . . . . . _ 2 p ( l + s ) [ 1  PaPB " J V I J B I J A  - -  -p(1 +s)] (5) 

Thus from (5) and (4) we get 

[2~IAB(PO) + 2flaB(Pq)+4yaB(rq) + ~A B(po)] 

=(p2--p2s2) [2oq4a + 2flaa +n,Aa + ~') A] 

+(l +pZ--2p--p2s2) [2~S + 2flVS +4,aS + ~ Bs] 

+ (2p--2p2 + 2pZs2) [20~aXS + 2flAa + 4,Aa + -~ aa] 

(6) 

where c~( a, flaa, ?AB and 6 aB are the force constants of 
a fictitious lattice composed of atoms of atomic weight 
Maa. 

Since the value of c in equation (1) does not change 
very much from the original values for alloying, we 
will get, on rearranging from the relations (6), (3) and 
(1), 

2 0 aR(,~)M aB(pq) = p2[ 02 M a + 0 z Ms - 202asMaB] 

+ 2P[&aBMAs- O~MB] + O~Ms 
- -  p2s2[ 02 Ma + 02 Ms - 20~sM as], 

(7) 

where OAB(p~), Oa and Os are the Debye characteristic 
temperatures of the alloy AB(pq) and the component 
metals A and B of atomic weights Mas(p~)=pMa+ 
qMs, Ma and Ms respectively, and Oas is the Debye 

characteristic temperature of the fictitious lattice AB. 
For at state of complete disorder, i.e. s=0,  we get 

the identical relation to that obtained by Mitra & 
Chattopadhyay (1972). 

Equation (7) cannot be applied unless the value of 
02sMAB of the fictitious lattice is known. However, 
this value can be calculated from the known value of 

2 Oas(pq)MaB(pq) of the alloy at a given state of ordering 
s. In the present investigation, the theory has been 
applied in the case of CuaAu alloys using Quimby's 
(1954) and other experimental data (Rayne, 1957; 
Bowen, 1954). 

D i s c u s s i o n  

The value of (~)~BMAn for the fictitious lattice has been 
determined from Quimby's (1954) computed data on 
the Debye characteristic temperature O of Cu3Au for 
the completely disordered state s=0.  Thus, using the 
value of 2 OanMan, the Debye characteristic tempera- 
tures of the alloy corresponding to different states of 
ordering was calculated and the variation of O with s 
for the alloy is shown in Fig. 1. It is found that the 
Debye characteristic temperature for the ordered state 
is larger than that for the disordered state. This is in 
qualitative agreement with the observation that the 
elastic constants for Cu3Au increase on ordering. It 
is also found that the calculated value of Oordered 
(278°K) agrees well with the values of 285°K from 
specific-heat measurement (Rayne, 1957) and of 272 °K 
from elastic-constant measurement (Quimby, 1954). 

It is also interesting to note that the size of the change 
in O on ordering from our expression (AO=30°K) 
agrees well with the data obtained by Bowen (1954) 
from the low-temperature resistance measurement 
(A O = 22 °K) and that from elastic-constant data (A O = 
24°K). Thus, at least in these cases, equation (7) is 
found to predict correctly the variation of Debye char- 
acteristic temperature O with the state of ordering s. 

Shri A. K. Chaudhuri is indebted to the Council of 
Scientific and Industrial Research, New Delhi, for 
financial help. 
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Fig. 1. Variation of Debye characteristic temperature for 
Cu3Au with state of ordering. 
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APPENDIX 

The equation of motion in the x-direction connecting 
the elastic constants and force constants considering 
nearest and next-nearest-neighbour interactions in a 
non-central force model for an f.c.c, crystal is given by 

82u 4(~1 + ~2) 
0 8t 2 - a - -  

2 ,+2,8 la u a'-u  
8x 2 + + a ~ 8y 2 8~z z ] 

47 [ 8Zv 82w 

+ -d- + 
(8) 

e2u 
= Ctl ~ -  + C44 \ 8y  2 -1- 8Z z } 

-'[- (C12 -~- 6'44) \ 8xOy + 8xSz ] (9) 

where u is the displacement in the x-direction and other 
symbols have the same significance as in the paper. 

Using the transformations of Mitra & Gokhale 
(1957), 

e = el l  + e22 + e33 

f =  e l l  -- e22 
_ 1  1 g - ~ e n  + 2ez2-- e33, 

where en, e22, e33 are all strains in the x, y and z direc- 
tions respectively, equations (8) and (9) can be written 
as ,  

82U C11-t-2C12 8e c n -  cl2 8 f  
0 8t ~ - 3 8x + 2 8x 

C11--812 8g [ ¢3e12 8e13 ] (10) 
+ 3 8x-+C44\ 8y + 8z ] 

4c~2 + 8 7 -  4,8 8e 6~1 + 4~2 - 4?' + 2,8 3f  
= 3a 8 X  + 2a 8x 

6cq + 4~2-  4), + 2,8 c3g + 
3a 8x 

+ - - 2 c x l  + 2,8 [ c3e12 + ~e13 '~ (11) 
a \ 8y --0-z ] " 

The above treatment presupposes the non-participa- 
tion of free electrons. In the case of free electrons tak- 
ing part in the propagation of elastic waves, they may 
be supposed to behave like a gas, propagating only 
longitudinal waves. The free-electron gas will then give 
rise to an additional force constant and in equation 
(11) a term fi/3a has to be added to the coefficient of 
8e/Sx as has been discussed by Mitra & Gokhale 
(1957). Then with the electron-gas participation, the 
relations between the force constants and elastic con- 
stants are given from (10) and (11) by 

a(cn + 2c12) = 4cx2 + 8 7 -  4,8 + 
a(cn - clz) = 6el + 4oc2 - @ + 2,8 

ac44 = 2oq + 2,8. 
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